`int(du)/(usqrt(5-u^2))`
` `
Let
`u=sqrt5sin(theta)`
`(du)/[d(theta)]=sqrt5cos(theta)`
`(du)=sqrt5cos(theta)d(theta)`
`int(du)/[usqrt(5-u^2)]`
`=int1/(sqrt5sin(theta))*[sqrt(5)cos(theta)d(theta)]/sqrt[5-(sqrt5sin(theta)^2)]`
`=int[cot(theta)d(theta)]/sqrt(5-5sin^2theta)`
`=int[cot(theta)d(theta)]/sqrt[5(1-sin^2theta)]`
`=int[cot(theta)d(theta)]/sqrt(5cos^2theta)`
`=int[cot(theta)d(theta)]/[sqrt(5)cos(theta)]`
`=int[cos(theta)d(theta)]/[sqrt(5)sin(theta)cos(theta)]`
`=int[d(theta)]/[sqrt(5)sin(theta)]`
`=int[csc(theta)d(theta)]/sqrt(5)`
`=1/sqrt(5)intcsc(theta)d(theta)`
`=1/sqrt(5)ln|sqrt(5)/u-sqrt(5-u^2)/u|+C`
`=1/sqrt(5)*ln|[sqrt5-sqrt(5-u^2)]/u|+C`
The final answer is
`=1/sqrt(5)*ln|[sqrt5-sqrt(5-u^2)]/u|+C`
No comments:
Post a Comment