Thursday, September 8, 2011

`dy/dx = 1/((x-1)sqrt(-4x^2+8x-1))` Solve the differential equation

 The given problem` (dy)/(dx) =1/((x-1)sqrt(-4x^2+8x+1)) ` is in form of a first order ordinary differential equation. To evaluate this, we may follow the variable separable differential equation: `N(y) dy= M(x)dx` .


`dy=1/((x-1)sqrt(-4x^2+8x+1)) dx`


Apply direct integration on both sides:


`int dy=int 1/((x-1)sqrt(-4x^2+8x+1)) dx`


For the left side, we apply basic integration property: `int (dy)=y.`


For the right side, we apply several substitutions to simplify it.


 Let `u =(x-1)` then `x=u+1` and `du=dx` . The integral becomes:


`int 1/((u)sqrt(-4x^2+8x+1)) dx =int 1/(usqrt(-4(u+1)^2+8(u+1)+1)) du`


`=int 1/(usqrt(-4(u^2+2u+1)+8u+8+1)) du`


`=int 1/(usqrt(-4u^2-8u-4+8u+8+1)) du`


`=int 1/(usqrt(-4u^2+5)) du`


Let `v = u^2` then `dv = 2u du` or `(dv)/(2u)=du` . The integral becomes:


`int 1/(usqrt(-4u^2+5)) du=int 1/(usqrt(-4v+5)) *(dv)/(2u)`


`=int (dv)/(2u^2sqrt(-4v+5))`


`=int (dv)/(2vsqrt(-4v+5))`


Apply the basic integration property: `int c*f(x)dx= c int f(x) dx` .


`int (dv)/(2vsqrt(-4v+5)) =(1/2)int (dv)/(vsqrt(-4v+5))`


Let `w= sqrt(-4v+5)` then `v= (5-w^2)/4` and `dw=-2/sqrt(-4v+5)dv` or


`(dw)/(-2)=1/sqrt(-4v+5)dv`


The integral becomes:


`(1/2)int (dv)/(vsqrt(-4v+5)) =(1/2)int 1/v*(dv)/sqrt(-4v+5)`


`=(1/2)int 1/((5-w^2)/4)*(dw)/(-2)`


`=(1/2)int 1*4/(5-w^2)*(dw)/(-2)`


`=(1/2)int -2/(5-w^2)dw`


`=(1/2)*-2 int 1/(5-w^2)dw`


`=(-1) int 1/(5-w^2)dw`


Apply basic integration formula for inverse hyperbolic tangent function:


`int (du)/(a^2-u^2)=(1/a)arctanh(u/a)+C`


Then, with corresponding values as: `a^2=5` and  `u^2=u^2` , we get: `a=sqrt(5)` and `u=w`  


`(-1) int 1/(5-w^2)dw = -1/sqrt(5) arctanh(w/sqrt(5))+C`


Recall `w=sqrt(-4v+5)`  and `v=u^2` then `w =sqrt(-4u^2+5).`


Plug-in `u=(x-1)` on `w =sqrt(-4u^2+5)` , we get:


`w =sqrt(-4(x-1)^2+5)`


`w=sqrt(-4(x^2-2x+1)+5)`


`w=sqrt(-4x^2+8x-4+5)`


`w=sqrt(-4x^2+8x+1)`



Plug-in `w=sqrt(-4x^2+8x+1)` on `-1/sqrt(5) arctanh(w/sqrt(5))+C` , we get:


`int 1/((x-1)sqrt(-4x^2+8x+1)) dx=1/sqrt(5)arctanh(sqrt(-4x^2+8x+1)/sqrt(5))+C`


`=-1/sqrt(5) arctanh(sqrt(-4x^2+8x+1)/5)+C`


Combining the results from both sides, we get the general solution of the differential equation as:


`y=-1/sqrt(5) arctanh(sqrt(-4x^2+8x+1)/5)+C`

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...