Sunday, September 4, 2011

`int t / sqrt(1-t^4) dt` Find the indefinite integral

Indefinite integral are written in the form of int `f(x) dx = F(x) +C`


 where: f(x) as the integrand


           F(x) as the anti-derivative function 


           C  as the arbitrary constant known as constant of integration



In the given problem: `int t/sqrt(1-t^4)dt` , we follow:` int f(t)dt =F(t) +C.`


The problem can be rewritten as:


`int (t *dt)/sqrt(1^2-(t^2)^2)`



This resembles the basic integration formula for inverse sine function:


`int (du)/sqrt(a^2-u^2) = arcsin(u/a) +C`


Using u-substitution, we let `u = t^2` then `du = 2t*dt or (du)/2= t*dt` .


Note: `a^2 = 1` then` a = 1`


The indefinite integral will be:


`int (t *dt)/sqrt(1^2-(t^2)^2)=int ((du)/2)/sqrt(1^2-(u)^2)`


Applying the basic property of integration: `int c*f(x)dx = c int f(x) dx` , we get:


`(1/2) int (du)/sqrt(1^2-u^2)`


Applying the basic integral formula for inverse sine function:


`(1/2) int (du)/sqrt(1^2-u^2)=1/2arcsin(u/1) +C`


                                    ` =1/2arcsin(u)+C`


Plug-in ` u=t^2 ` in `1/2arcsin(u) +C` to express the indefinite intergral in terms of  `int f(t)dt=F(t)+C` :


`int t/sqrt(1-t^4)dt =1/2arcsin(t^2) +C`

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...