Make the substitution `u = sqrt(4x^2 - 9),` then `du = (4x)/sqrt(4x^2 - 9) dx.` Inversely, `dx =sqrt(4x^2 - 9)/(4x) du = u/(4x) du` and `4x^2 = u^2 + 9.` The limits of integration become from `sqrt(3)` to `3sqrt(3).`
The indefinite integral becomes
`int u/(4 u x^2) du = int (du)/(u^2 + 9) = 1/3 arctan(u/3) + C,`
where `C` is an arbitrary constant.
Thus the definite integral is `1/3 (arctan(sqrt(3)) - arctan(1/sqrt(3))) = 1/3 (pi/3 - pi/6) = pi/18.`
No comments:
Post a Comment