Given the integral: `\int \frac{2}{x\sqrt{9x^2-25}}dx`
Let `x=\frac{5}{3}sect` ``
So, `dx=\frac{5}{3}sect tant dt`
Hence we have,
`\int \frac{2}{x\sqrt{9x^2-25}}dx=\int \frac{\frac{10}{3}sect tant}{\frac{5}{3}sec t\sqrt{25sec^2t-25}}dt`
`=\int \frac{2tant}{\sqrt{25(sec^2t-1)}}dt`
`=\int \frac{2tan t}{\sqrt{25tan^2t}}dt`
`=\int \frac{2tant}{5tant}dt`
`=\frac{2}{5}\int dt`
`=\frac{2}{5}t+C`
`=\frac{2}{5}sec^{-1}(\frac{3}{5}x)+C`
No comments:
Post a Comment