Arc length (L) of the function x=h(y) on the interval [c,d] is given by the formula,
`L=int_c^dsqrt(1+(dx/dy)^2)dy` , if x=h(y) and c `<=` y `<=` d,
Now let's differentiate the function with respect to y,
`x=1/3sqrt(y)(y-3)`
`dx/dy=1/3{sqrt(y)d/dy(y-3)+(y-3)d/dysqrt(y)}`
`dx/dy=1/3{sqrt(y)(1)+(y-3)1/2(y)^(1/2-1)}`
`dx/dy=1/3{sqrt(y)+(y-3)/(2sqrt(y))}`
`dx/dy=1/3{(2y+y-3)/(2sqrt(y))}`
`dx/dy=1/3{(3y-3)/(2sqrt(y))}`
`dx/dy=1/3(3)(y-1)/(2sqrt(y))`
`dx/dy=(y-1)/(2sqrt(y))`
Plug in the above derivative in the arc length formula,
`L=int_1^4sqrt(1+((y-1)/(2sqrt(y)))^2)dy`
`L=int_1^4sqrt(1+(y^2-2y+1)/(4y))dy`
`L=int_1^4sqrt((4y+y^2-2y+1)/(4y))dy`
`L=int_1^4sqrt((y^2+2y+1)/(4y))dy`
`L=int_1^4(1/2)sqrt((y+1)^2/y)dy`
`L=1/2int_1^4(y+1)/sqrt(y)dy`
Now let's compute first the indefinite integral by applying integral substitution,
Let `u=sqrt(y)`
`(du)/dy=1/2(y)^(1/2-1)`
`(du)/dy=1/(2sqrt(y))`
`int(y+1)/sqrt(y)dy=int(u^2+1)2du`
`=2int(u^2+1)du`
`=2(u^3/3+u)`
substitute back u= `sqrt(y)` and add a constant C to the solution,
`=2(y^(3/2)/3+sqrt(y))+C`
`L=[1/2{2(y^(3/2)/3+sqrt(y)}]_1^4`
`L=[y^(3/2)/3+sqrt(y)]_1^4`
`L=[4^(3/2)/3+sqrt(4)]-[1^(3/2)/3+sqrt(1)]`
`L=[8/3+2]-[1/3+1]`
`L=[(8+6)/3]-[(1+3)/3]`
`L=[14/3]-[4/3]`
`L=10/3`
Arc length of the function over the given interval is `10/3`
No comments:
Post a Comment