Saturday, September 8, 2012

`x = 1/3sqrt(y)(y-3) , 1

Arc length (L) of the function x=h(y) on the interval [c,d] is given by the formula,


`L=int_c^dsqrt(1+(dx/dy)^2)dy`  , if x=h(y) and c `<=`  y `<=`  d,


Now let's differentiate the function with respect to y,


`x=1/3sqrt(y)(y-3)`


`dx/dy=1/3{sqrt(y)d/dy(y-3)+(y-3)d/dysqrt(y)}`


`dx/dy=1/3{sqrt(y)(1)+(y-3)1/2(y)^(1/2-1)}`


`dx/dy=1/3{sqrt(y)+(y-3)/(2sqrt(y))}`


`dx/dy=1/3{(2y+y-3)/(2sqrt(y))}`


`dx/dy=1/3{(3y-3)/(2sqrt(y))}`


`dx/dy=1/3(3)(y-1)/(2sqrt(y))`


`dx/dy=(y-1)/(2sqrt(y))`


Plug in the above derivative in the arc length formula,


`L=int_1^4sqrt(1+((y-1)/(2sqrt(y)))^2)dy`


`L=int_1^4sqrt(1+(y^2-2y+1)/(4y))dy`


`L=int_1^4sqrt((4y+y^2-2y+1)/(4y))dy`


`L=int_1^4sqrt((y^2+2y+1)/(4y))dy`


`L=int_1^4(1/2)sqrt((y+1)^2/y)dy`


`L=1/2int_1^4(y+1)/sqrt(y)dy`


Now let's compute first the indefinite integral by applying integral substitution,


Let `u=sqrt(y)`


`(du)/dy=1/2(y)^(1/2-1)`  


`(du)/dy=1/(2sqrt(y))`


`int(y+1)/sqrt(y)dy=int(u^2+1)2du`


`=2int(u^2+1)du`


`=2(u^3/3+u)` 


substitute back u= `sqrt(y)`  and add a constant C to the solution,


`=2(y^(3/2)/3+sqrt(y))+C`


`L=[1/2{2(y^(3/2)/3+sqrt(y)}]_1^4`


`L=[y^(3/2)/3+sqrt(y)]_1^4`


`L=[4^(3/2)/3+sqrt(4)]-[1^(3/2)/3+sqrt(1)]`


`L=[8/3+2]-[1/3+1]`


`L=[(8+6)/3]-[(1+3)/3]`


`L=[14/3]-[4/3]`


`L=10/3`


Arc length of the function over the given interval is `10/3`

No comments:

Post a Comment

Thomas Jefferson&#39;s election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...