`coth^2(x) - csc h^2(x) =1`
Take note that hyperbolic cotangent and hyperbolic cosecant are defined as
- `coth (x) = (e^x+e^(-x))/(e^x-e^(-x))`
- `csc h^2(x) =2/(e^x - e^(-x))`
Plugging them, the left side of the equation becomes
`((e^x+e^(-x))/(e^x-e^(-x)))^2 -(2/(e^x - e^(-x)) )^2=1`
`(e^x+e^(-x))^2/(e^x-e^(-x))^2 -2^2/(e^x - e^(-x))^2=1`
`(e^x+e^(-x))^2/(e^x-e^(-x))^2 -4/(e^x - e^(-x))^2=1`
`((e^x+e^(-x))^2-4)/(e^x - e^(-x))^2=1`
Then, simplify the numerator.
`((e^x + e^(-x))(e^x + e^(-x)) - 4)/(e^x- e^(-x))^2=1`
`(e^(2x)+1+1+e^(-2x) - 4)/(e^x- e^(-x))^2=1`
`(e^(2x)+2+e^(-2x) - 4)/(e^x- e^(-x))^2=1`
`(e^(2x) - 2 +e^(-2x)) /(e^x- e^(-x))^2=1`
Factoring the numerator, it becomes
`((e^x - e^(-x))(e^x-e^(-x)))/(e^x- e^(-x))^2=1`
`(e^x - e^(-x))^2/(e^x- e^(-x))^2=1`
Cancelling common factor, the right side simplifies to
`1=1`
This verifies that the given equation is an identity.
Therefore, `coth^2(x) - csc h^2(x)=1` is an identity.
No comments:
Post a Comment