This equation is separable: `x` and `y` may be moved to the different sides. The equivalent equation is
`(yy')/(1+y^2) = x/(1+x^2),`
and now we can integrate it:
`int(yy')/(1+y^2) dx = int x/(1+x^2) dx,`
`int(y)/(1+y^2) dy = int x/(1+x^2) dx,`
`1/2 ln(1+y^2) = 1/2 ln(1 + x^2) + C,`
`ln(1+y^2) = ln(1 + x^2) + C,` (1)
where `C` is an arbitrary constant.
If `y=sqrt(3)` for `x=0,` then `ln(1+3) = ln(1) + C,` so `C = ln4 - ln1 = ln4.`
Finally, apply exponent to the both sides of (1) and obtain
`1+y^2 = e^(ln4)(1+x^2) = 4+4x^2,` or `y = sqrt(3+4x^2).` This is the answer.
No comments:
Post a Comment