`intsqrt(5+4x-x^2)dx`
Rewrite the integrand by completing the square:
`=intsqrt(-(x-2)^2+9)dx`
Now apply the integral substitution,
Let u=x-2,
`=>du=dx`
`=intsqrt(9-u^2)du`
Now using the standard integral:
`intsqrt(a^2-x^2)dx=(xsqrt(a^2-x^2))/2+a^2/2sin^(-1)x/a+C`
`intsqrt(9-u^2)du=(usqrt(3^2-u^2))/2+3^2/2sin^(-1)u/3`
`=(usqrt(9-u^2))/2+9/2sin^(-1)u/3`
Substitute back u=x-2,
`=((x-2)sqrt(9-(x-2)^2))/2+9/2sin^(-1)((x-2)/3)`
Add a constant C to the solution,
`=((x-2)sqrt(9-(x-2)^2))/2+9/2sin^(-1)((x-2)/3)+C`
No comments:
Post a Comment