To prove
`sinh^-1 t =ln(t+sqrt(t^2+1))`
let
`sinh^-1 t = x`
`t=sinh(x)= (e^x -e^(-x))/2 =(e^x - (1/(e^x)))/2= (e^(2x) -1)/(2(e^x))`
let ` t= (e^(2x) -1)/(2(e^x))`
=> `2e^x t = e^(2x) -1`
=> let ` e^x = u` so,
`2ut=u^2 -1`
=> `u^2 -2ut -1 =0` is of the quadratic form `ax^2 +bx+c = 0` so finding the roots using the quadratic formula
`(-b+-sqrt(b^2 -4ac))/(2a)`
here in the equation `u^2 -2ut -1 =0`
`a=1 , b=-2, c=-1`
`u=(-(-2t)+-sqrt(4t^2-4(1)(-1)))/2 `
`u=(2t+-sqrt(4t^2+4))/2 `
=`(2t+-2sqrt(t^2+1))/2`
=`t+-sqrt(t^2+1)`
Since`u = e^x > 0` then `t+sqrt(t^2+1)>0`
So` e^x=t+sqrt(t^2+1)`
`x=ln(t+sqrt(t^2+1))`
Since
`sinh^-1 t = x`
it follows that
`sinh^-1 t = ln(t+sqrt(t^2+1))`
No comments:
Post a Comment