Sunday, February 2, 2014

Integral of sec^n(x)dx

You need to use reduction formula to integrate the function, such that:


`int sec^n x dx = int sec^(n-2) x* sec^2 x dx`


You need to use integration by parts, such that:


`int udv = uv - int vdu`


`u = sec^(n-2) x => du = (n-2)*sec^(n-3) x tan(x)`


`dv = sec^2 x => v = tan x`


`int sec^(n-2) x* sec^2 x dx = tan x*sec^(n-2) x - (n-2)*int sec^(n-3) x*tan x dx`


`int sec^(n-2) x* sec^2 x dx = tan x*sec^(n-2) x - (n-2)*int sec^(n-2) x*tan^2 x dx`


You need to replace `sec^2 x - 1` for `tan^2 x` , such that:


`int sec^(n-2) x* sec^2 x dx = tan x*sec^(n-2) x - (n-2)*int sec^(n-2) x*(sec^2 x - 1) dx`


`int sec^(n-2) x* sec^2 x dx = tan x*sec^(n-2) x - (n-2)*int (sec^n x- sec^(n-2) x) dx `


You need to put `I_n = int sec^n x dx,` such that:


`I_n = tan x*sec^(n-2) x - (n-2)*I_n + (n-2)*int sec^(n-2) x dx`


`I_n + (n-2)*I_n = tan x*sec^(n-2) x + (n-2)*int sec^(n-2) x dx `


`I_n*(n - 2 + 1) = tan x*sec^(n-2) x + (n-2)*int sec^(n-2) x dx `


Put `int sec^(n-2) x dx = I_(n-2)`


`(n-1)*I_n = tan x*sec^(n-2) x + (n-2)*I_(n-2)`


`I_n = 1/(n-1)* tan x*sec^(n-2) x + (n-2)/(n-1)*I_(n-2)`


Hence, evaluating the given integral, using reduction formula yields `I_n = 1/(n-1)* tan x*sec^(n-2) x + (n-2)/(n-1)*I_(n-2).`

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...