Wednesday, December 17, 2014

`y = C_1e^2x + C_2e^(-2x) + C_3sin(2x) + C_4cos(2x)` Determine whether the function is a solution of the differential equation `y^((4)) - 16y = 0`

Given,


`y = C_1e^2x + C_2e^(-2x) + C_3sin(2x) + C_4cos(2x)`


let us find


`y'=(C_1e^2x + C_2e^(-2x) + C_3sin(2x) + C_4cos(2x))'`


`= 2 C_1e^2x +(-2) C_2e^(-2x) +2 C_3cos(2x) -2 C_4 sin(2x)`


`y''=(2 C_1e^2x +(-2) C_2e^(-2x) +2 C_3cos(2x) -2 C_4 sin(2x))'`


`=4 C_1e^2x +(4) C_2e^(-2x) -4 C_3sin(2x) -4 C_4 cos(2x)`


`y'''=(4 C_1e^2x +(4) C_2e^(-2x) -4 C_3sin(2x) -4 C_4 cos(2x))'`


`=8 C_1e^2x +(-8) C_2e^(-2x) -8 C_3cos(2x) +8 C_4 sin(2x)`


`y''''=(8 C_1e^2x +(-8) C_2e^(-2x) -8 C_3cos(2x) +8 C_4 sin(2x))'`


`=(16 C_1e^2x +(-8)(-2) C_2e^(-2x) -8(-2) C_3sin(2x) +8(2) C_4 cos(2x))`


`=(16C_1e^2x +16 C_2e^(-2x) +16 C_3sin(2x) + 16C_4cos(2x))`


So lets check whether `y'''' -16 y =0` or not


`(16C_1e^2x +16 C_2e^(-2x) +16 C_3sin(2x) + 16C_4cos(2x))-16(C_1e^2x + C_2e^(-2x) + C_3sin(2x) + C_4cos(2x))`


=`(16C_1e^2x +16 C_2e^(-2x) +16 C_3sin(2x) + 16C_4cos(2x))-(16C_1e^2x +16 C_2e^(-2x) +16 C_3sin(2x) + 16C_4cos(2x))`


`=0`


so,


`y'''' -16 y =0`

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...