Given,
`y = C_1e^2x + C_2e^(-2x) + C_3sin(2x) + C_4cos(2x)`
let us find
`y'=(C_1e^2x + C_2e^(-2x) + C_3sin(2x) + C_4cos(2x))'`
`= 2 C_1e^2x +(-2) C_2e^(-2x) +2 C_3cos(2x) -2 C_4 sin(2x)`
`y''=(2 C_1e^2x +(-2) C_2e^(-2x) +2 C_3cos(2x) -2 C_4 sin(2x))'`
`=4 C_1e^2x +(4) C_2e^(-2x) -4 C_3sin(2x) -4 C_4 cos(2x)`
`y'''=(4 C_1e^2x +(4) C_2e^(-2x) -4 C_3sin(2x) -4 C_4 cos(2x))'`
`=8 C_1e^2x +(-8) C_2e^(-2x) -8 C_3cos(2x) +8 C_4 sin(2x)`
`y''''=(8 C_1e^2x +(-8) C_2e^(-2x) -8 C_3cos(2x) +8 C_4 sin(2x))'`
`=(16 C_1e^2x +(-8)(-2) C_2e^(-2x) -8(-2) C_3sin(2x) +8(2) C_4 cos(2x))`
`=(16C_1e^2x +16 C_2e^(-2x) +16 C_3sin(2x) + 16C_4cos(2x))`
So lets check whether `y'''' -16 y =0` or not
`(16C_1e^2x +16 C_2e^(-2x) +16 C_3sin(2x) + 16C_4cos(2x))-16(C_1e^2x + C_2e^(-2x) + C_3sin(2x) + C_4cos(2x))`
=`(16C_1e^2x +16 C_2e^(-2x) +16 C_3sin(2x) + 16C_4cos(2x))-(16C_1e^2x +16 C_2e^(-2x) +16 C_3sin(2x) + 16C_4cos(2x))`
`=0`
so,
`y'''' -16 y =0`
No comments:
Post a Comment