Saturday, June 13, 2015

`yy' = -8cospix` Find the general solution of the differential equation

The general solution of a differential equation in a form of` f(y) y'=f(x)` can


 be evaluated using direct integration.


We can denote `y'` as `(dy)/(dx) ` then, 


`f(y) y'=f(x)`


`f(y) (dy)/(dx)=f(x)`


Rearrange into : `f(y) (dy)=f(x) dx`


To be able to apply direct integration : `intf(y) (dy)=int f(x) dx.`


 Applying this to the given problem: `yy'=-8cos(pix)` ,  we get:


`y(dy)/(dx)=-8cos(pix)`


`y(dy)=-8cos(pix)dx`


`int y(dy)=int-8cos(pix)dx`


For the integration on the left side, we apply Power Rule integration: int u^n `du= u^(n+1)/(n+1)` on int `y dy` .


`int y dy = y^(1+1)/(1+1)`


            `= y^2/2`


For the integration on the right side, we apply the basic integration property: `int c*f(x)dx= c int f(x) dx` and basic integration formula for cosine function: `int cos(u) du = sin(u) +C`


`int -8 cos(pix) dx= -8 int cos(pix) dx`


Let `u = pix` then `du = pi dx` or` (du)/pi=dx.`


Then the integral becomes:


`-8 int cos(pix) dx=-8 int cos(u) *(du)/pi`


                              `=-8/pi int cos(u) du`


                             `=-8/pi*sin(u) +C`


Plug-in `u=pix` in `-8/pi*sin(u) +C` , we get:


`-8 int cos(pix) dx=-8/pi*sin(pix) +C`



Combing the results, we get the general solution for differential equation `(yy'=-8cos(pix))` as:


`y^2/2=-8/pi*sin(pix) +C`


`2* [y^2/2] = 2*[-8/pi*sin(pix)]+C`


`y^2 =-16/pi*sin(pix)+C`


The general solution:` y ^2=-16/pisin(pix)+C` can be expressed as:


`y = +-sqrt(-16/pisin(pix)+C)` .

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...