`sinh(2x)=2sinh(x)cosh(x)`
Take note that hyperbolic sine and hyperbolic cosine are defined as
`sinh(u)=(e^u - e^(-u))/2`
`cosh(u)=(e^u+e^(-u))/2`
So when the left side is expressed in exponential form, it becomes
`(e^(2x)-e^(-2x))/2=2sinh(x)cosh(x)`
Factoring the numerator, it turns into
`((e^x - e^(-x))(e^x + e^(-x)))/2=2sinh(x)cosh(x)`
To return it to hyperbolic function, multiply the left side by 2/2.
`((e^x - e^(-x))(e^x + e^(-x)))/2*2/2=2sinh(x)cosh(x)`
Then, rearrange the factors in such a way that it can be expressed in terms of sinh and cosh.
`2*(e^x - e^(-x))/2 * (e^x + e^(-x))/2=2sinh(x)cosh(x)`
`2*sinh(x)*cosh(x)=2sinh(x)cosh(x)`
`2sinh(x)cosh(x)=2sinh(x)cosh(x)`
This proves that the given equation is an identity.
Therefore, `sinh(2x)=2sinh(x)cosh(x)` is an identity.
No comments:
Post a Comment