Recall that `y'` is the same as `(dy)/(dx)` . Then in the given problem: `(2+x)y'=3y` , we may write it as:
`(2+x) (dy)/(dx) = 3y.`
This will help to follow the variable separable differential equation in a form of `N(y) dy = M(x) dx.`
To rearrange `(2+x) (dy)/(dx) = 3y` ,cross-multiply `(dx)` to the other side:
`(2+x)dy =3y dx`
Divide both sides by `(2+x)` :
`((2+x)dy)/(2+x) =(3y dx)/(2+x)`
`dy =(3y dx)/(2+x)`
Divide both sides by `y` :
`(dy )/y=(3y dx)/((2+x)y)`
`(dy)/y=(3dx)/(2+x)`
To solve for the general solution of the differential equation, apply direct integration on both sides:
`int (dy)/y=int (3dx)/(2+x)`
For the left side, apply the basic integration formula for logarithm:
`int (dy)/y= ln|y|`
For the right side, we may apply the basic integration property: `int c*f(x) dx = c int f(x)dx` .
`int (3dx)/(2+x)= 3 int (dx)/(2+x)`
Let `u =2+x` then du= dx
The integral becomes:
`3 int (dx)/(2+x) = 3 int (du)/u`
We can now apply the basic integration formula for logarithm on the integral part:
`3 int (du)/u= 3ln|u| +C`
Recall `u =(2+x) ` then `3 int (dx)/(2+x) =3ln|2+x| +C`
Combining the results from both sides, we get:
`ln|y|=3ln|2+x| +C`
`y=e^(3ln|x+2|+C)`
` y= e^(ln(x+2)^3+C)`
Law of Exponents:` x^(n+m)= x^n*x^m`
`y= e^(ln(x+2)^3)*e^C`
`e^C =C` is an arbitrary constant, so
`y= Ce^(ln(x+2)^3)`
` y = C(x+2)^3`
No comments:
Post a Comment