Wednesday, September 9, 2009

`int (dx)/[(ax)^2 - b^2]^(3/2)` Evaluate the integral

`intdx/[(ax)^2-b^2]^(3/2)`


Let's use the integral substitution,


Let u=ax


`du=adx`


`=>dx=(du)/a`


`=int(du)/(a(u^2-b^2)^(3/2))`


`=1/aint(du)/(u^2-b^2)^(3/2)`


Now let's use the trigonometric substitution,


Let `u=bsec(theta)`


so `du=bsec(theta)tan(theta)d theta`


Plug these in the integrand,


`=1/aint(bsec(theta)tan(theta))/(b^2sec^2(theta)-b^2)^(3/2)d theta`


`=1/aint(bsec(theta)tan(theta))/(b^2(sec^2(theta)-1))^(3/2)d theta`


`=1/aint(bsec(theta)tan(theta))/((b^2)^(3/2)(sec^2(theta)-1)^(3/2))d theta` 


Now use the identity:`tan^2(theta)=sec^2(theta)-1`


`=1/aint(bsec(theta)tan(theta))/(b^3(tan^2(theta))^(3/2))d theta`


`=1/aint(sec(theta)tan(theta))/(b^2tan^3(theta))d theta`


`=1/(ab^2)intsec(theta)/(tan^2(theta))d theta`


`=1/(ab^2)int(1/cos(theta))/((sin^2(theta))/(cos^2(theta)))d theta`


`=1/(ab^2)int(1/cos(theta))*(cos^2(theta))/(sin^2(theta))d theta`


`=1/(ab^2)intcos(theta)/(sin^2(theta))d theta`


Now let `v=sin(theta)`


`=>dv=cos(theta)d theta`


`=1/(ab^2)int1/v^2dv`


`=1/(ab^2)(v^(-2+1)/(-2+1))`


`=1/(ab^2)(-1/v)`


substitute back `v=sin(theta)`


`=-1/(ab^2sin(theta))`


We have used the substitution `u=bsec(theta)`


So,`cos(theta)=b/u`


using pythagorean identity,


`sin^2(theta)+cos^2(theta)=1`


`sin^2(theta)+(b/u)^2=1`


`sin^2(theta)=1-b^2/u^2`


`sin^2(theta)=(u^2-b^2)/u^2`


`sin(theta)=sqrt(u^2-b^2)/u`


Also recall we have used u=ax,


`:.sin(theta)=sqrt((ax)^2-b^2)/(ax)`


`=-1/(ab^2sqrt((ax)^2-b^2)/(ax))`


`=(-1/(b^2))(x/sqrt((ax)^2-b^2))`


Add a constant C to the solution,


`=(-1/b^2)(x/sqrt((ax)^2-b^2))+C`

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...