Friday, September 25, 2009

`y = 1/2 (xsqrt(4-x^2) + 4arcsin(x/2))` Find the derivative of the function

The derivative of y in terms of x is denoted by  `d/(dx)y` or `y'` .


 For the given problem: `y =1/2[xsqrt(4-x^2)+4arcsin(x/2)]` , we apply the basic derivative property:


`d/(dx) c*f(x) = c d/(dx) f(x)` .


Then,


`d/(dx)y =d/(dx) 1/2[xsqrt(4-x^2)+4arcsin(x/2)]`


`y’ =1/2 d/(dx) [xsqrt(4-x^2)+4arcsin(x/2)]`



Apply the basic differentiation property: `d/(dx) (u+v) = d/(dx) (u) + d/(dx) (v)`


`y’ =1/2[d/(dx) (xsqrt(4-x^2))+ d/(dx) (4arcsin(x/2))]`



For the derivative of `d/(dx) (xsqrt(4-x^2))` , we apply the Product Rule: `d/(dx)(u*v) = u’*v =+u*v’` .


`d/(dx) (xsqrt(4-x^2))= d/(dx)(x) *sqrt(4-x^2)+ x * d/(dx) (sqrt(4-x^2))`



Let `u=x` then `u'= 1`


    `v= sqrt(4-x^2) ` then `v' =-x/ sqrt(4-x^2)`


Note: `d/(dx) sqrt(4-x^2) = d/(dx)(4-x^2)^(1/2)`


Applying the chain rule of derivative:


`d/(dx)(4-x^2)^(1/2)= 1/2(4-x^2)^(-1/2)*(-2x)`


                     ` =-x(4-x^2)^(-1/2)`


                    `=-x/(4-x^2)^(1/2)`  or - `–x/sqrt(4-x^2)`


 Following the Product Rule, we set-up the derivative as:


`d/(dx)(x) *sqrt(4-x^2)+ x * d/(dx) (sqrt(4-x^2))`


`= 1 * sqrt(4-x^2)+ x*(-x/sqrt(4-x^2))`


`= sqrt(4-x^2)-x^2/sqrt(4-x^2)`


 Express as one fraction:


`sqrt(4-x^2)* sqrt(4-x^2)/ sqrt(4-x^2)-x^2/sqrt(4-x^2)`


`=( sqrt(4-x^2))^2/ sqrt(4-x^2) –x^2/sqrt(4-x^2)`


`=( 4-x^2)/ sqrt(4-x^2) –x^2/sqrt(4-x^2)`


`=( 4-x^2-x^2)/ sqrt(4-x^2)`


`=( 4-2x^2)/ sqrt(4-x^2)`



Then, `d/(dx) (xsqrt(4-x^2))= ( 4-2x^2)/ sqrt(4-x^2)`



For the derivative of `d/(dx) (4arcsin(x/2))` , we apply the basic derivative property: `d/(dx) c*f(x) = c d/(dx) f(x)` .


`d/(dx) (4arcsin(x/2))= 4 d/(dx) (arcsin(x/2))`


Apply the basic derivative formula for inverse sine function: `d/(dx) (arcsin(u))= (du)/sqrt(1-u^2)` .


Let `u =x/2` then `du=1/2`


`4d/(dx) (4arcsin(x/2))]= 4*(1/2)/sqrt(1-(x/2)^2)`


                    `= 2/sqrt(1-(x^2/4))`


                    ` =2/sqrt(1*4/4-(x^2/4))`


                     ` = 2/sqrt((4-x^2)/4)`


                    ` = 2/ (sqrt(4-x^2)/sqrt(4))`


                   `=2/ (sqrt(4-x^2)/2)`


                   `=2*2/sqrt(4-x^2)`


                   `=4/sqrt(4-x^2)`




Combining the results, we get:


`y' = 1/2[d/(dx) (xsqrt(4-x^2))+ d/(dx) (4arcsin(x/2))]`


`=1/2[( 4-2x^2)/ sqrt(4-x^2)+4/sqrt(4-x^2)]`


`=1/2[( 4-2x^2+4)/ sqrt(4-x^2)]`


` =1/2[( -2x^2+8)/ sqrt(4-x^2)]`


` =1/2[( 2(-x^2+4))/ sqrt(4-x^2)]`


` =(-x^2+4)/ sqrt(4-x^2)]`


or `y'=(4-x^2)/ sqrt(4-x^2)]`



Applying Law of Exponents:  ` x^n/x^m= x^n-m` :


`y' =(4-x^2)/ sqrt(4-x^2)`


` =(4-x^2)^1/ (4-x^2)^(1/2)`


` =(4-x^2)^(1-1/2)`


`=(4-x^2)^(1/2)`


Final answer:


`y'=(4-x^2)^(1/2)`


 or


`y'=sqrt(4-x^2)`

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...