Saturday, November 14, 2009

`int 1 / (xsqrt(x^4-4)) dx` Find the indefinite integral

For the given integral: `int 1/(xsqrt(x^4-4))dx` , we may apply u-substitution by letting:


`u =x^4-4 ` then ` du = 4x^3 dx` .


Rearrange `du = 4x^3 dx` into `(du)/( 4x^3)= dx`


Plug-in `u =x^4-4`  and `(du)/( 4x^3)= dx` , we get:


`int 1/(xsqrt(x^4-4))dx =int 1/(xsqrt(u))* (du)/( 4x^3)`


                       ` =int 1/(4x^4sqrt(u))du`


Recall `u =x^4-4` then adding 4 on both sides becomes: `u + 4 = x^4` .


Plug-in `x^4 =u+4` in the integral:


`int 1/(4x^4sqrt(u))du` =`int 1/(4(u+4)sqrt(u))du`


Apply the basic integration property: `int c*f(x) dx = c int f(x) dx` :


`int 1/(4(u+4)sqrt(u))du=1/4int 1/((u+4)sqrt(u))du`


Apply another set of substitution by letting:


`v =sqrt(u) `  which is the same as `v^2 =u` .


Then taking the derivative on both sides, we get `2v dv = du` .


Plug-in `u =v^2` , `du = 2v dv` , and `sqrt(u)=v `  , we get:


`1/4 int 1/((u+4)sqrt(u))du = 1/4int 1/((v^2+4)v)(2v dv)`


We simplify by cancelling out common factors v and 2:


`1/4int 1/((v^2+4)v)(2v dv) =1/2int (dv)/(v^2+4) or1/2int (dv)/(v^2+2^2)`  



The integral part resembles the integration formula:


`int (du)/(u^2+a^2) = (1/a) arctan (u/a) +C`


 Then, 


`1/2 int (dv)/(v^2+4) =1/2 *(1/2) arctan (v/2) +C`


                        ` =1/4 arctan (v/2) +C`


Recall that we let `v =sqrt(u) ` and `u =x^4-4 `  then  ` v = sqrt(x^4-4)`


Plug-in `v = sqrt(x^4-4)` in  `1/4 arctan (v/2) +C`  to get the final answer:


`int 1/(xsqrt(x^4-4))dx =1/4 arctan (sqrt(x^4-4)/2) +C`

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...