Sunday, October 10, 2010

`int_0^1 x^3 sqrt(1 - x^2) dx` Evaluate the integral

You need to use the following substitution, such that:


`x = sin t => dx = cos t dt`


`1 - x^2 = 1 - sin^2 t  = cos^2 t`


Changing the variable, yields:


`int_0^1 x^3*sqrt(1 - x^2)dx = int_(t_1)^(t_2) sin^3 t*sqrt (cos^2 t)*cos t dt`


`int_(t_1)^(t_2) sin^3 t*sqrt (cos^2 t)*cos t dt = int_(t_1)^(t_2) sin^3 t*cos t*cos t dt `


`int_(t_1)^(t_2) sin^3 t*cos^2 t dt =  int_(t_1)^(t_2) sin^2 t*cos^2 t*sin t dt`


`int_(t_1)^(t_2) sin^2 t*cos^2 t*sin tdt = int_(t_1)^(t_2) (1 - cos^2 t)*cos^2 t*sin tdt`


You need to make the next substitution, such that:


`cos t = u => -sin t dt = du`


`int_(u_1)^(u_2) (1 - u^2)*u^2*(-du) =- int_(u_1)^(u_2)u^2 du + int_(u_1)^(u_2)u^4du`


`int_(u_1)^(u_2) (1 - u^2)*u^2*(-du) =(-(cos t)^3/3 + (cos t)^5/5)|_(t_1)^(t_2)`


Since `x = sin t => t = arcsin x`


`int_0^1 x^3*sqrt(1 - x^2)dx = (-(cos (arcsin x))^3/3 + (cos (arcsin x)^5/5)|_(0)^(1)`


`int_0^1 x^3*sqrt(1 - x^2)dx = (-(cos (arcsin 1))^3/3 + (cos (arcsin 1)^5/5 + (cos (arcsin 0))^3/3 - (cos (arcsin 0))^5/5)`


`int_0^1 x^3*sqrt(1 - x^2)dx = -(cos (pi/2))^3/3 + (cos(pi/2))^5/5 + (cos 0)^3/3 - (cos 0)^5/5`


`int_0^1 x^3*sqrt(1 - x^2)dx = 1/3 - 1/5`


`int_0^1 x^3*sqrt(1 - x^2)dx = 2/15`


Hence, evaluating the definite integral yields `int_0^1 x^3*sqrt(1 - x^2)dx = 2/15.`

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...