For the given integral:` int (x^4+ 5^x) dx` , we may apply the basic integration property:
`int (u+v) dx = int (u) dx + int (v) dx` .
We can integrate each term separately.
`int (x^4+ 5^x) dx =int (x^4) dx + int (5^x) dx`
For the integration of first term: `int (x^4) dx` ,
we apply the Power Rule for integration:
`int (x^n) dx = x^(n+1)/ (n+1) +C` .
Then,
`int (x^4) dx = x^(4+1)/(4+1) +C`
`int (x^4) dx = x^(5)/(5) +C`
For the integration of first term: `int (5^x) dx` , we apply the basic integration formula for exponential function :
`int (a^x) dx = a^x/ln(a) +C` where ` a!=1`
Then,
`int (5^x) dx =5^x/ln(5) +C`
Combining the two integrations for the final answer:
` int (x^4+ 5^x) dx =x^(5)/(5) +x^(5)/(5) +C`
No comments:
Post a Comment