`y=5^(-4x)`
The derivative formula of an exponential function is:
`d/(dx) (a^u) = ln(a) * a^u * (du)/(dx)`
Applying this formula, the derivative of the function is:
`(dy)/(dx) = d/(dx)(5^(-4x))`
`(dy)/(dx) = ln(5) * 5^(-4x) * d/(dx)(-4x)`
`(dy)/(dx) = ln(5) * 5^(-4x) * (-4)`
`(dy)/(dx) = -4 ln(5) * 5^(-4x)`
Therefore, `(dy)/(dx) = -4ln(5) * 5^(-4x)` .
No comments:
Post a Comment