To be able to evaluate the given integral:` int_0^2 (dx)/(x^2-2x+2)` , we
complete the square of the expression:`x^2-2x+2` .
To complete the square, we add and subtract `(-b/(2a))^2` .
The `x^2-2x+2` resembles the `ax^2+bx+c` where:
`a=1` , `b =-2 ` and `c=2 ` .
Then,
`(-b/(2a))^2 =(-(-2)/(2(1)))^2`
` =(2/2)^2`
` = (1)^2`
` =1`
Add and subtract 1 :
`x^2-2x+2 +1-1`
Rearrange as: `(x^2-2x +1) +2-1 = (x-1)^2+1`
Plug-in` x^2-2x+2 = (x-1)^2+1` in the given integral:`int_0^2 (dx)/(x^2-2x+2)` .
`int_0^2 (dx)/(x^2-2x+2) =int_0^2 (dx)/((x-1)^2+1)`
This resembles the basic integral formula for inverse tangent function:
`int (du)/(u^2+a^2) =1/a *arctan(u/a)+C`
Then indefinite integral F(x)+C,
`int (dx)/((x-1)^2+1^2) =1/1 *arctan((x-1)/1)+C`
`=arctan(x-1)+C`
For the definite integral, we apply: `F(x)|_a^b= F(b)-F(a)` .
`arctan(x-1)|_0^2 =arctan(2-1) -arctan(0-1)`
` =arctan(1) -arctan(-1)`
` =pi/4 -(-pi/4)`
` =pi/4 +pi/4`
` =(2pi)/4`
` =pi/2`
No comments:
Post a Comment