Tuesday, January 28, 2014

`int_0^2 dx/(x^2-2x+2) ` Find or evaluate the integral by completing the square

To be able to evaluate the given integral:` int_0^2 (dx)/(x^2-2x+2)` , we


complete the square of the expression:`x^2-2x+2` .


To complete the square, we add and subtract `(-b/(2a))^2` .


 The `x^2-2x+2` resembles the `ax^2+bx+c` where:


 `a=1` , `b =-2 ` and `c=2 ` .


Then,


`(-b/(2a))^2 =(-(-2)/(2(1)))^2`


             ` =(2/2)^2`


             ` = (1)^2`


             ` =1`


Add and subtract 1 :


`x^2-2x+2 +1-1`


Rearrange as: `(x^2-2x +1) +2-1 = (x-1)^2+1`


Plug-in` x^2-2x+2 = (x-1)^2+1` in the given integral:`int_0^2 (dx)/(x^2-2x+2)` .


`int_0^2 (dx)/(x^2-2x+2) =int_0^2 (dx)/((x-1)^2+1)`


This resembles the basic integral formula for inverse tangent function:


`int (du)/(u^2+a^2) =1/a *arctan(u/a)+C`


Then  indefinite integral F(x)+C,


`int (dx)/((x-1)^2+1^2) =1/1 *arctan((x-1)/1)+C`


                                `=arctan(x-1)+C` 


For the definite integral, we apply: `F(x)|_a^b= F(b)-F(a)` .


`arctan(x-1)|_0^2 =arctan(2-1) -arctan(0-1)`


                    ` =arctan(1) -arctan(-1)`


                    ` =pi/4 -(-pi/4)`


                    ` =pi/4 +pi/4`


                    ` =(2pi)/4`


                    ` =pi/2` 

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...