To solve the differential equation of `(dy)/(dx)=(x^3-2x)/(5+4x-x^2)` .we may express it in a form of variable separable differential equation:`N(y) dy = M(x) dx`
`dy=(x^3-2x)/(5+4x-x^2) dx`
Then apply direct integration on both sides:
`int dy= int (x^3-2x)/(5+4x-x^2) dx`
For the left side, we apply the basis integration property:` int dy = y`
For the right side, we may apply long division to expand:
`int (x^3-2x)/(5+4x-x^2)dx= int [-x-4+(20)/(5+4x-x^2)]dx`
Then apply basic integration property: `int (u+-v) dx= int(u) dx +- int (v) dx`
where we can integrate each term separately.
`int [-x-4+(20)/(5+4x-x^2)]dx=int (-x) dx -int 4dx +int (20)/(5+4x-x^2)]dx`
For the integration of `int (-x) dx` , we may apply Power Rule integration: `int u^n du= u^(n+1)/(n+1)+C`
`int (-x) dx = - int x dx`
`=-x^(1+1)/(1+1)`
`= -x^2/2`
For the integration of` -int 4 dx` , we may apply basic integration property:`int c*f(x)dx= c int f(x) dx`
`-int 4dx = -4 int dx`
`= -4x`
For the integration of `int 20/(5+4x-x^2)dx` , we apply partial fractions:
`(20)/(5+4x-x^2) = 20/(6(x+1)) -20/(6(x-5))`
Then, `int (20)/(5+4x-x^2)dx=int [20/(6(x+1)) -20/(6(x-5))]dx`
Apply basic integration property: `int (u+-v) dx= int(u) dx +- int (v) dx`
`int [20/(6(x+1)) -20/(6(x-5))]dx =int 20/(6(x+1))dx-int 20/(6(x-5))dx`
Apply apply the basic integration property: `int c*f(x)dx= c int f(x) dx` and basic integration formula for logarithm: `int (du)/u = ln|u|+C` .
`int 20/(6(x+1))dx-int 20/(6(x-5))dx =(20/6)int 1/(x+1)dx-(20/6)int 1/(x-5)dx`
`=(20/6)ln|x+1|- (20/6)ln|x-5|`
For the right side, we get:
`int [-x-4+(20)/(5+4x-x^2)]dx= -x^2/2-4x+(20/6)ln|x+1|- (20/6)ln|x-5|+C`
Note: Just include the constant of integration "C" on one side as the arbitrary constant of a differential equation.
Combining the results from both sides, we get the general solution of the differential equation:
`y =-x^2/2-4x+(20/6)ln|x+1|- (20/6)ln|x-5|+C`
`y =-x^2/2-4x+(10/3)ln|x+1|- (10/3)ln|x-5|+C`
No comments:
Post a Comment