`int_0^0.6x^2/sqrt(9-25x^2)dx`
Let's first evaluate the indefinite integral by applying the integral substitution,
Let `x=3/5sin(u)`
`=>dx=3/5cos(u)du`
Plug in the above in the integral,
`intx^2/sqrt(9-25x^2)dx=int(3/5sin(u))^2/(sqrt(9-25(3/5sin(u))^2))(3/5cos(u))du`
`=int(27sin^2(u)cos(u))/(125sqrt(9-9sin^2(u)))du`
`=int(27sin^2(u)cos(u))/(125sqrt(9(1-sin^2(u))))du`
use the identity:`1-sin^2(x)=cos^2(x)` `<br> `
`=int(27sin^2(u)cos(u))/(125*3sqrt(cos^2(u)))du`
`=int(9sin^2(u)cos(u))/(125cos(u))du`
`=9/125intsin^2(u)du`
Now use the identity:`sin^2(x)=(1-cos(2x))/2`
`=9/125int(1-cos(2u))/2du`
`=9/250int(1-cos(2u))du`
`=9/250(int1du-intcos(2u)du)`
`=9/250(u-sin(2u)/2)`
We have taken `x=3/5sin(u)`
`=>u=arcsin(5/3x)`
Substitute back u and add a constant C to the solution,
`=9/250(arcsin(5/3x)-1/2sin(2arcsin(5/3x)))+C`
Now let's evaluate the definite integral,
`int_0^0.6x^2/sqrt(9-25x^2)dx=[9/250(arcsin(5/3x)-1/2sin(2arcsin(5/3x)))]_0^0.6`
`=[9/250(arcsin(5/3*0.6)-1/2sin(2arcsin(5/3*0.6)))]-[9/250(arcsin(5/3*0)-1/2sin(2arcsin(5/3*0)))]`
`=[9/250(arcsin(1)-1/2sin(2arcsin(1)))]-[9/250(arcsin(0)-1/2sin(2arcsin(0)))]`
`=[9/250(pi/2-1/2sin(2*pi/2))]-[0]`
`=[9/250(pi/2-1/2sin(pi))]`
`=[9/250(pi/2-1/2*0)]`
`=(9pi)/500`
`=0.05655`
` `
` `
` `
` `
` `
No comments:
Post a Comment