We have to evaluate the integral : `\int \frac{sec^2x}{\sqrt{25-tan^2x}}dx`
Let `tanx =t`
So, `sec^2x dx=dt`
Therefore we have,
`\int \frac{sec^2x}{\sqrt{25-tan^2x}}dx=\int \frac{dt}{\sqrt{25-t^2}}`
Now let `t=5sinu`
So, `dt= 5cosu du`
Hence we have,
`\int \frac{dt}{\sqrt{25-t^2}}=\int \frac{5cosu}{\sqrt{25-25sin^2u}}du`
`=\int \frac{5cosu}{\sqrt{25(1-sin^2u)}}du`
`=\int\frac{5cosu}{\sqrt{25cos^2u}}du `
`=\int \frac{5cosu}{5cosu}du`
`=\int du`
`=u+C` (where C is s constant)
`=\frac{1}{5}sin^{-1}(t)+C`
`=\frac{1}{5}sin^{-1}(tanx)+C`
No comments:
Post a Comment