Sunday, April 6, 2014

`2xy' - ln(x^2) = 0 , y(1) = 2` Find the particular solution that satisfies the initial condition

The problem: `2xy'-ln(x^2)=0 ` is as first order ordinary differential equation that we can evaluate by applying variable separable differential equation:


`N(y)y'=M(x)`


`N(y)(dy)/(dx)=M(x)`


`N(y) dy=M(x) dx`


Apply direct integration:` intN(y) dy= int M(x) dx` to solve for the


 general solution of a differential equation.


Then, `2xy'-ln(x^2)=0` will be rearrange in to `2xy'= ln(x^2)`


Let `y' = (dy)/(dx)` , we get: `2x(dy)/(dx)= ln(x^2)`


or`2x(dy)= ln(x^2)(dx)`


Divide both sides by `x` to express in a form of `N(y) dy=M(x) dx` :


`(2xdy)/x= (ln(x^2)dx)/x`


`2dy= (ln(x^2)dx)/x`


Applying direct integration, we will have:


`int 2dy= int (ln(x^2)dx)/x`


For the left side, recall `int dy = y` then `int 2dy = 2y`


For the right side, we let `u =x^2` then `du =2x dx` or `dx=(du)/(2x)` .


`int (ln(x^2))/xdx=int (ln(u))/x*(du)/(2x)`


                    ` =int (ln(u)du)/(2x^2)`


                    ` =int (ln(u)du)/(2u) `


                    ` =1/2 int ln(u)/u du`



Let `v=ln(u)` then `dv = 1/udu` ,we get:


`1/2 int ln(u)/u du=1/2 int v* dv`


Applying the Power Rule of integration: `int x^n dx = x^(n+1)/(n+1)+C`


`1/2 int v* dv= 1/2 v^(1+1)/(1+1)+C`


                    `= 1/2*v^2/2+C`


                   `=1/4v^2+C`


Recall `v = ln(u)` and `u = x^2` then `v =ln(x^2)` .


The integral will be:


`int (ln(x^2))/xdx=1/4(ln(x^2))^2 +C or(ln(x^2))^2 /4+C`


Combing the results from both sides, we get the general solution of the differential equation as:


`2y = (ln(x^2))^2 /4+C`


or `y =(ln(x^2))^2 /8+C`



To solve for the arbitary constant (C), we consider the initial condition `y(1)=2` 


When we plug-in the values, we get:


`2 =(ln(1^2))^2 /8+C`


`2 =0/8+C`


`2=0+C`


then `C=2`


.Plug-in `C=2` on the general solution: `y =(ln(x^2))^2 /8+C` , we get the


particular solution as:


`y =(ln(x^2))^2 /8+2`

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...