Friday, April 11, 2014

`int_sqrt(2)^2 1/(t^2 sqrt(t^2 - 1)) dt` Evaluate the integral

You need to re-write the expression` t^2 - 1` , such that:


`t^2 - 1 = t^2(1 - (1/t)^2)`


You need to use the following substitution, such that:


`1/t = sin u => -1/(t^2) dt = cos u du => (dt)/(t^2) = -cos u du`


`u = arcsin (1/t)`


`int_(sqrt 2)^2 (dt)/(t^3*sqrt(t^2-1)) = - int_(u_1)^(u_2) (cos u du)/(1/(sin u)*sqrt(1 - sin^2 u))`


You need to use the basic trigonometric formula `1 - sin^2 u = cos^2 u,` such that:


`- int_(u_1)^(u_2) (cos u*sin u du)/(sqrt(1 - sin^2 u)) = - int_(u_1)^(u_2) `


`- int_(u_1)^(u_2) (cos u*sin u du)/(sqrt(cos^2 u)) = - int_(u_1)^(u_2) (cos u*sin u du)/(cos u)`


Reducing like terms yields:


`-int_(u_1)^(u_2) (sin udu) = -(-cos u)|_(u_1)^(u_2)`


Replacing back the variable, yields:


`int_(sqrt 2)^2 (dt)/(t^3*sqrt(t^2-1)) =(cos (arcsin (1/t)))_(sqrt 2)^2`


`int_(sqrt 2)^2 (dt)/(t^3*sqrt(t^2-1)) =cos (arcsin (1/2)) - cos (arcsin (1/sqrt 2))`


`int_(sqrt 2)^2 (dt)/(t^3*sqrt(t^2-1)) = cos(pi/6) - cos(pi/4)`


`int_(sqrt 2)^2 (dt)/(t^3*sqrt(t^2-1)) = sqrt3/2 - sqrt2/2`


`int_(sqrt 2)^2 (dt)/(t^3*sqrt(t^2-1)) = (sqrt3 - sqrt2)/2`


Hence, evaluating the given integral yields `int_(sqrt 2)^2 (dt)/(t^3*sqrt(t^2-1)) = (sqrt3 - sqrt2)/2.`

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...