We have to evaluate the integral : ```\int \frac{dx}{x\sqrt{4x^2-1}}`
Let `\sqrt{4x^2-1}=u`
So, `\frac{1}{2\sqrt{4x^2-1}}.8x dx=du`
`\frac{4xdx}{\sqrt{4x^2-1}}=du`
`\frac{dx}{\sqrt{4x^2-1}}=\frac{du}{4x}`
Hence we have,
`\int \frac{dx}{x\sqrt{4x^2-1}}=\int \frac{du}{4x^2}`
`=\int \frac{du}{u^2+1}`
`=tan^{-1}(u)+C`
`=tan^{-1}(\sqrt{4x^2-1})+C` where C is a constant
No comments:
Post a Comment