Monday, August 15, 2016

`int sqrt(1 + x^2) / x dx` Evaluate the integral

`intsqrt(1+x^2)/xdx`


Let's evaluate using the trigonometric substitution,


Let `x=tan(theta)`


`dx=sec^2(theta)d theta`


`=intsqrt(1+tan^2(theta))/(tan(theta))*sec^2(theta) d theta`


Now use the identity: `1+tan^2(x)=sec^2(x)`


`=intsqrt(sec^2(theta))/tan(theta)*sec^2(theta)d theta`


`=intsec(theta)/tan(theta)*sec^2(theta)d theta`


`=int(sec(theta)(1+tan^2(theta)))/tan(theta) d theta`


`=int((sec(theta))/tan(theta)+(sec(theta)tan^2(theta))/tan(theta))d theta`


`=intsec(theta)/tan(theta)d theta+intsec(theta)tan(theta)d theta` 


`=int(1/cos(theta))*(1/(sin(theta)/cos(theta)))d theta+intsec(theta)tan(theta)d theta`


`=int1/sin(theta) d theta+intsec(theta)tan(theta)d theta`


`=intcsc(theta)d theta+intsec(theta)tan(theta)d theta`


Now using the standard integrals,


`intcsc(x)dx=ln|csc(x)-cot(x)`


`intsec(x)tan(x)dx=sec(x)`


`=ln|csc(theta)-cot(theta)|+sec(theta)`


Now substitute back `x=tan(theta)`


`=>cot(theta)=1/tan(theta)=1/x`


`1+tan^2(theta)=sec^2(theta)`


`=>1+x^2=sec^2(theta)`


`=>sec(theta)=sqrt(1+x^2)`


`1+cot^2(theta)=csc^2(theta)`


`=>1+(1/x)^2=csc^2(theta)`


`csc(theta)=sqrt(1+x^2)/x` 


`:.intsqrt(1+x^2)/xdx=ln|sqrt(1+x^2)/x-1/x|+sqrt(1+x^2)+C` ,C is a constant

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...