Tuesday, August 23, 2016

`int_0^a x^2 sqrt(a^2 - x^2) dx` Evaluate the integral

`int_0^ax^2sqrt(a^2-x^2)dx`


Let's evaluate the indefinite integral by applying integral substitution,


Let `x=asin(u)`


`dx=acos(u)du`


`intx^2sqrt(a^2-x^2)dx=int(asin(u))^2sqrt(a^2-(asin(u))^2)acos(u)du`


`=inta^2sin^2(u)sqrt(a^2-a^2sin^2(u))acos(u)du`


`=a^3intsin^2(u)cos(u)sqrt(a^2(1-sin^2(u)))du`


`=a^3intsin^2(u)cos(u)asqrt(1-sin^2(u))du` 


Now use the identity:`1-sin^2(x)=cos^2(x)`


`=a^4intsin^2(u)cos(u)sqrt(cos^2(u))du`


`=a^4intsin^2(u)cos^2(u)du`


Now use the identity:`cos^2(x)sin^2(x)=(1-cos(4x))/8`


`=a^4int(1-cos(4u))/8du`


`=a^4/8int(1-cos(4u)du`


`=a^4/8(int1du-intcos(4u)du)`


`=a^4/8(u-sin(4u)/4)`


Substitute back `u=arcsin(x/a)`


`=a^4/8(arcsin(x/a)-sin(4arcsin(x/a))/4)`


add a constant C to the solution,


`=a^4/8(arcsin(x/a)-1/4sin(4arcsin(x/a)))+C`


Now let's evaluate the definite integral,


`int_0^ax^2sqrt(a^2-x^2)dx=[a^4/8(arcsin(x/a)-1/4sin(4arcsin(x/a)))]_0^a`


`=[a^4/8(arcsin(a/a)-1/4sin(4arcsin(a/a)))]-[a^4/8(arcsin(0/a)-1/4sin(4arcsin(0/a)))]`


`=[a^4/8(arcsin(1)-1/4sin(4arcsin(1)))]-[a^4/8(arcsin(0)-1/4sin(4arcsin(0)))]`


`=[a^4/8(pi/2-1/4sin(4*pi/2))]-[a4/8(0-1/4sin(4*0))]`


`=[a^4/8(pi/2-1/4sin(2pi))]-[0]`


`=[a^4/8(pi/2-1/4(0))]`


`=a^4/8(pi/2)`


`=(pia^4)/16`

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...