Saturday, May 16, 2009

`int x^2 /(3 + 4x - 4x^2)^(3/2) dx` Evaluate the integral

`intx^2/(3+4x-4x^2)^(3/2)dx`


Let's rewrite the denominator of the integrand,


`=intx^2/(-(4x^2-4x+1)+4)^(3/2)dx`


`=intx^2/((2^2-(2x-1)^2))^(3/2)dx`


Now let's use the integral substitution,


Let `2x-1=2sin(theta)`


`=>2x=1+2sin(theta)`


`=>x=(1+2sin(theta))/2`


`dx=1/2(2cos(theta))d theta`


`dx=cos(theta)d theta`


Plug the above in the integral,


`=int((1+2sin(theta))/2)^2/(2^2-2^2sin^2(theta))^(3/2)cos(theta)d theta`


`=int1/4((1+2sin(theta))^2cos(theta))/(2^2(1-sin^2(theta)))^(3/2)d theta`


`=1/4int((1+2sin(theta))^2cos(theta))/((2^2)^(3/2)(1-sin^2(theta))^(3/2))d theta`


`=1/4int((1+2sin(theta))^2cos(theta))/(2^3(1-sin^2(theta))^(3/2))d theta`


Now use the identity:`1-sin^2(x)=cos^2(x)`


`=1/32int((1+2sin(theta))^2cos(theta))/(cos^2(theta))^(3/2)d theta`


`=1/32int((1+4sin(theta)+4sin^2(theta))cos(theta))/(cos^3(theta))d theta`


`=1/32int(1+4sin(theta)+4sin^2(theta))/(cos^2(theta))d theta`


`=1/32int(1/(cos^2(theta))+(4sin(theta))/(cos^2(theta))+(4sin^2(theta))/(cos^2(theta))d theta`


`=1/32int(sec^2(theta)+4tan(theta)sec(theta)+4tan^2(theta))d theta`


Now use the identity:`tan^2(x)=sec^2(x)-1`


`=1/32int(sec^2(theta)+4tan(theta)sec(theta)+4(sec^2(theta)-1)d theta`


`=1/32int(5sec^2(theta)+4tan(theta)sec(theta)-4)d theta`


Now use the standard integrals,


`intsec^2(x)dx=tan(x)+C`


`intsec(x)tan(x)dx=sec(x)+C`


`=1/32(5tan(theta)+4sec(theta)-4theta)+C`


We have used the integral substitution `2x-1=2sin(theta)`


`=>sin(theta)=(2x-1)/2`


`theta=arcsin((2x-1)/2)`


Now let's find the `tan(theta)` and `sec(theta)`  using the right triangle with angle `theta` and opposite side (2x-1) and hypotenuse as 2,


Use pythagorean identity to find the adjacent side A:


`A^2+(2x-1)^2=2^2`


`A^2+4x^2-4x+1=4`


`A^2=4-1+4x-4x^2=3+4x-4x^2`


`A=sqrt(3+4x-4x^2)`


`tan(theta)=(2x-1)/(sqrt(3+4x-4x^2))`


`sec(theta)=2/(sqrt(3+4x-4x^2))`


Now plug these in the above solution,


`=1/32(5*(2x-1)/(sqrt(3+4x-4x^2))+4*2/(sqrt(3+4x-4x^2))-4arcsin((2x-1)/2))+C`


`=1/32((10x-5+8)/sqrt(3+4x-4x^2)-4arcsin((2x-1)/2))+C`


`=1/32((10x+3)/sqrt(3+4x-4x^2)-4arcsin((2x-1)/2))+C`

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...