Make the substitution `u = sqrt(16x^2 - 5),` then `16x^2 = u^2 + 5,`
`du = (32x)/(2sqrt(16x^2 - 5)) dx = (16 x dx)/sqrt(16x^2 - 5),`
or `dx/sqrt(16x^2 - 5) = (du)/(16 x).`
The limits of integration for `u` are from `sqrt(11)` to `sqrt(251).`
The indefinite integral becomes `int (du)/(16x^2) = int (du)/(u^2 + 5),`
which is equal to `1/sqrt(5) arctan(u/sqrt(5)) + C.`
This way the definite integral is
`1/sqrt(5) (arctan(sqrt(251/5)) - arctan(sqrt(11/5))) approx0.2026.`
No comments:
Post a Comment