To evaluate the given integral: `int_(-2)^(2)(dx)/(x^2+4x+13)` ,
we follow the first fundamental theorem of calculus:
If f is continuous on closed interval [a,b], we follow:
` int_a^bf(x)dx = F(b) - F(a)`
where F is the anti-derivative or indefinite integral of f on closed interval `[a,b]` .
To determine the `F(x)` , we apply completing the square on the trinomial: `x^2+4x+13.`
Completing the square:
`x^2+4x+13 ` is in a form of ` ax^2 +bx+c`
where:
a =1
b =4
c= 13
To complete square ,we add and subtract `(-b/(2a))^2` on both sides:
With a=1 and b = 4 then:
`(-b/(2a))^2 =(-4/(2*1))^2 = 4`
Then`x^2+4x+13` becomes:
`x^2+4x+ 13 +4-4`
`(x^2+4x+4) + 13 -4`
Applying` x^2 +4x +13 =(x+2)^2 + 9 ` in the given integral, we get:
`int_(-2)^(2) (dx)/(x^2+4x+13) =int_(-2)^(2) (dx)/((x+2)^2 + 9)`
The integral form: `int_(-2)^(2) (dx)/((x+2)^2 + 9) ` resembles the
basic integration formula for inverse tangent function:
`int_a^b (du)/(u^2+c^2) = (1/c)arctan(u/c) |_a^b`
Using u-substitution, we let `u = x+2 ` then `du = 1dx` or ` du=dx.`
where the boundary limits: upper bound = 2 and lower bound =-2
and `c^2 = 9` then `c = 3`
The indefinite integral will be:
`int_(-2)^(2) (dx)/((x+2)^2 + 9) =int_(-2)^(2) (du)/(u^2 + 9)`
`=(1/3)arctan(u/3) |_(-2)^(2)`
Plug-in` u=x+2` to solve for` F(x)` :
`(1/3)arctan(u/3) |_(-2)^(2)=(1/3)arctan((x+2)/3) |_(-2)^(2).`
We now have `F(x)|_a^b=(1/3)arctan(u/3) |_(-2)^(2).`
Applying `F(x)|_a^b= F(b)-F(a)` , we get:
`(1/3)arctan(x+2/3) |_(-2)^(2)`
` =(1/3)arctan((2+2)/3) -(1/3)arctan((-2+2)/3)`
` =(1/3)arctan(4/3) -(1/3)arctan(0/3)`
`=(1/3)arctan(4/3) -0`
`=(1/3)arctan(4/3)`
No comments:
Post a Comment