We have to evaluate the integral `\int \frac{x+5}{\sqrt{9-(x-3)^2}}dx`
Let `x-3=u`
So, `dx=du`
Hence we can write,
`\int \frac{x+5}{\sqrt{9-(x-3)^2}}dx=\int \frac{u+8}{\sqrt{9-u^2}}du`
`=\int \frac{u}{\sqrt{9-u^2}}du+\int \frac{8}{\sqrt{9-u^2}}dx`
Now we will first evaluate the integral: `\int \frac{udu}{\sqrt{9-u^2}}`
Let `9-u^2=t`
So, `-2udu=dt`
Hence we have,
`\int \frac{udu}{\sqrt{9-u^2}}=\int \frac{-dt}{2\sqrt{t}}```
`=-\sqrt{t}`
`=-\sqrt{9-u^2}`
Now we will evaluate the integral`\int \frac{8}{\sqrt{9-u^2}}du`
`\int \frac{8}{\sqrt{9-u^2}}du=\frac{8du}{3\sqrt{1-(\frac{u}{3})^2}}`
`=8sin^{-1}(\frac{u}{3})` since we have the identity
`\frac{d}{dx}(sin^{-1}(\frac{u}{a}))=\frac{1}{a}.\frac{1}{\sqrt{1-(\frac{u}{a})^2}}`
So finally we have the result as:
`\int \frac{x+5}{\sqrt{9-(x-3)^2}}dx=-\sqrt{9-u^2}+8sin^{-1}(\frac{u}{3})+C`
`=-\sqrt{9-(x-3)^2}+8sin^{-1}(\frac{x-3}{3})+C`
``
No comments:
Post a Comment