`int(x+4)6^((x+4)^2)dx=`
We will make substitution `u=(x+4)^2.` Differentiation the substitution gives us `du=2(x+4)dx.`
Now we rewrite the integral.
`1/2 int 6^((x+4)^2)2(x+4)dx=`
The above integral is equal to the starting one because `1/2` and `2` cancel out. Now we use the substitution while.
`1/2int6^udu=1/2cdot6^u/ln 6+C`
To write the final solution we simply return the substitution i.e. we put `(x+4)^2` instead of `u.`
`6^((x+4)^2)/(2ln6)+C` where C is a constant
No comments:
Post a Comment