We have to evaluate the definite integral:
`\int_{0}^{1/\sqrt{2}}\frac{arc sinx}{\sqrt{1-x^2}}dx`
Let `t= arcsinx`
Differentiating both sides we get,
`\frac{1}{\sqrt{1-x^2}}dx=dt` (Since we know that `\frac{d}{dx}(arc sinx)=\frac{1}{\sqrt{1-x^2}}`
Now when x=0, t=0
and when `x=1/sqrt(2)` , t= `\frac{\pi}{4}`
Hence we have,
`\int_{0}^{1/\sqrt{2}}\frac{arc sinx}{\sqrt{1-x^2}}dx=\int_{0}^{\pi/4}tdt`
=`pi^2/32`
No comments:
Post a Comment