We shall use:
Product rule
`(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)`
Chain rule
`(f(g(x)))'=f'(g(x))g'(x)`
First we apply product rule.
`g'(alpha)=(5^(-alpha/2))'sin(2alpha)+5^(-alpha/2)(sin(2alpha))'=`
Now we apply chain rule to the composite functions we need to derivate.
`5^(-alpha/2)ln (5)cdot(-1/2) sin(2alpha)+5^(-alpha/2)cos(2alpha)cdot2`
No comments:
Post a Comment