We have to evaluate `\int \frac{dx}{\sqrt{1-4x^2}}`
Let `x=\frac{1}{2} sint `
So, `dx= \frac{1}{2}cost dt`
Hence we have,
`\int \frac{dx}{\sqrt{1-4x^2}}=\int \frac{\frac{1}{2}cost }{\sqrt{1-4(\frac{1}{4}sin^2t)}}dt`
`=\int \frac{\frac{1}{2}cost}{\sqrt{1-sin^2t}}dt`
`= int 1/2cost/sqrt(cos^2t) dt`
`=\int \frac{\frac{1}{2}cost}{cost}dt`
`=\int \frac{1}{2}dt`
`=\frac{1}{2}t+C`
`=\frac{1}{2}sin^{-1}(2x)+C`
No comments:
Post a Comment