We have to evaluate the integral: `\int \frac{dx}{\sqrt{9-x^2}}`
let `x=3sint`
So, `dx=3cost dt`
Hence we have,
`\int \frac{dx}{\sqrt{9-x^2}}=\int \frac{3cost}{\sqrt{9-9sin^2t}}dt`
`=\int \frac{3cost}{\sqrt{9(1-sin^2t)}} dt`
`=\int \frac{3cost}{\sqrt{9cos^2t}}dt`
`=\int \frac{3cost}{3cost}dt`
`=\int dt`
`=t+C` (where C is a constant)
`=\sin^{-1}(x/3)+C`
No comments:
Post a Comment