Sunday, October 18, 2009

`int sqrt(x^2 + 2x) dx` Evaluate the integral

`intsqrt(x^2+2x)dx`


Let's rewrite the integrand by completing the square for `x^2+2x` ,


`=intsqrt((x+1)^2-1)dx`


Now apply integral substitution,


Let u=x+1,


`=>du=1dx`


`=intsqrt(u^2-1)du`


Now again apply the integral substitution,


Let u=sec(v),


`=>du=sec(v)tan(v)dv`


`=intsqrt(sec^2(v)-1)sec(v)tan(v)dv`


Now use the identity: `sec^2(x)=1+tan^2(x)`


`=intsqrt(1+tan^2(v)-1)sec(v)tan(v)dv`


`=intsqrt(tan^2(v))sec(v)tan(v)dv`


assuming `tan(v)>=0,sqrt(tan^2(v))=tan(v)`


`=inttan^2(v)sec(v)dv`


Using the identity: `tan^2(x)=sec^2(x)-1`


`=int(sec^2(v)-1)sec(v)dv`


`=int(sec^3(v)-sec(v))dv`


Apply the sum rule,


`=intsec^3(v)dv-intsec(v)dv`


Now let's evaluate the first integral by applying the integral reduction,


`intsec^n(x)=(sec^(n-1)(x)sin(x))/(n-1)+(n-2)/(n-1)intsec^(n-2)(x)dx`


`intsec^3(v)dv=(sec^2(v)sin(v))/2+(3-2)/(3-1)intsec(v)dv`


`intsec^3(v)dv=(sec^2(v)sin(v))/2+1/2intsec(v)dv`


Now use the common integral: `intsec(x)dx=ln|sec(x)+tan(x)|`


`intsec^3(v)dv=(sec^2(v)sin(v))/2+1/2(ln|sec(v)+tan(v)|)`


Now plug back the above integral and the common integral,


`=(sec^2(v)sin(v))/2+1/2(ln|sec(v)+tan(v)|)-ln|sec(v)+tan(v)|`  


`=(sec^2(v)sin(v))/2-1/2(ln|sec(v)+tan(v)|)`


`=sin(v)/(2cos^2(v))-1/2(ln|sec(v)+tan(v)|)`


`=(sec(v)tan(v))/2-1/2(ln|sec(v)+tan(v)|)`


Now substitute back: `u=sec(v). u=(x+1)`


`=>v=arcsec(u)`


`=>v=arcsec(x+1)`


`=(sec(arcsec(x+1))tan(arcsec(x+1)))/2-1/2(ln|sec(arcsec(x+1))+tan(arcsec(x+1))|)`


Now `tan(arcsec(x+1))=sqrt((x+1)^2-1)`


`=((x+1)sqrt((x+1)^2-1))/2-1/2(ln|(x+1)+sqrt((x+1)^2-1)|) + C`

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...