Thursday, October 8, 2009

`int_0^ln5 e^x/(1+e^(2x)) dx` Evaluate the definite integral

For the given integral problem:` int_0^(ln(5))e^x/(1+e^(2x))dx` , it resembles the basic integration formula for inverse tangent:


`int_a^b (du)/(u^2+c^2) = (1/c)arctan(u/c) |_a^b`


where we let:


`u^2 =e^(2x) ` or` (e^x)^2 `   then `u= e^x`


`c^2 =1` or `1^2` then `c=1`


For the derivative of `u =e^(x)` , we apply the derivative of exponential function:


`du =e^x dx` .



Applying u-substitution: `u = e^x ` and` du = e^x dx` , we get:


`int e^x/(1+e^(2x))dx =int (e^xdx)/(1+(e^x)^2)`


                              `=int (du)/(1+(u)^2)`


Applying the basic integral formula of inverse tangent, we get:


`int (du)/(1+(u)^2) =(1/1)arctan(u/1)`


                           = `arctan(u)`


Express it in terms of x by plug-in `u=e^x` :


`arctan(u) =arctan(e^x)`



Evaluate with the given boundary limit:


`arctan(e^x)|_0^(ln(5)) =arctan(e^(ln(5)))-arctan(e^0)`


                          ` =arctan(5)-arctan(1)`


                                ` =arctan(5) -pi/4`

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...