Tuesday, October 27, 2009

`ysqrt(1-x^2)y' - xsqrt(1-y^2) = 0 , y(0) = 1` Find the particular solution that satisfies the initial condition

The given problem: `ysqrt(1-x^2)y' -xsqrt(1-y^2)=0` is written in a form of first order "ordinary differential equation" or first order ODE.


 To evaluate this, we can apply variable separable differential equation  in which we express it in a form of `f(y) dy= g(x) dx ` before using direct integration on each side.


To rearrange the problem, we move `xsqrt(1-y^2)` to the other to have an equation as:`ysqrt(1-x^2)y' = xsqrt(1-y^2)` .


 Divide both sides by `sqrt(1-y^2)sqrt(1-x^2)` :


`(ysqrt(1-x^2)y')/(sqrt(1-y^2)sqrt(1-x^2)) = (xsqrt(1-y^2))/(sqrt(1-y^2)sqrt(1-x^2))`


`(y*y')/sqrt(1-y^2)= x/sqrt(1-x^2)`


Applying direct integration: `int(y*y')/sqrt(1-y^2)= int x/sqrt(1-x^2)`


Express `y'` as `(dy)/(dx)` : `int(y*(dy)/(dx))/sqrt(1-y^2)= int x/sqrt(1-x^2)`


Express in a form of `f(y) dy= g(x) dx` : `int(y*dy)/sqrt(1-y^2)= int (x*dx)/sqrt(1-x^2)`



To find the indefinite integral on both sides, we let:


`u = 1-y^2` then `du =-2y dy` or   `(du)/(-2) =y dy`


`v = 1-x^2` then `dv =-2x dx` or `(dv)/(-2) =x dx`


 The integral becomes: 


`int(y*dy)/sqrt(1-y^2)= int (x*dx)/sqrt(1-x^2)`


`int((du)/(-2))/sqrt(u)= int ((dv)/(-2))/sqrt(v)`


Apply the basic integration property: `int c*f(x) dx= c int f(x) dx` .


`(-1/2) int((du))/sqrt(u)= (-1/2) int (dv)/sqrt(v)`


Apply the Law of Exponents: `sqrt(x) = x^(1/2) and 1/x^n = x^(-n)` .


Then, the integral becomes:


`(-1/2) int((du))/u^(1/2)= (-1/2) int (dv)/v^(1/2)`


`(-1/2) int u^(-1/2)du= (-1/2) int v^(-1/2)dv`


Applying Power Rule of integration: `int x^ndx= x^(n+1)/(n+1)`


`(-1/2) int u^(-1/2)du= (-1/2) int v^(-1/2)dv`


`(-1/2) u^(-1/2+1)/(-1/2+1)= (-1/2) v^(-1/2+1)/(-1/2+1)+C`


`(-1/2) u^(1/2)/(1/2)= (-1/2) v^(1/2)/(1/2)+C`


`-u^(1/2)= - v^(1/2)+C`


Note: `(-1/2)/(1/2) = -1`


In radical form: `- sqrt( u)= -sqrt(v)+C`


Plug-in `u =1-y^2` and `v=1-x^2` , we get the general solution of differential equation:


`- sqrt( 1-y^2)= -sqrt(1-x^2)+C`


Divide both sides by `-1` , we get: `sqrt( 1-y^2)= sqrt(1-x^2)+C` .


Note:`C/(-1) = C` as arbitrary constant


For particular solution, we consider the initial condition ` y(0) =1` where  `x_0=0` and `y_0=1` .


Plug-in the values, we get:


`sqrt( 1-1^2)= sqrt(1-0^2)+C`


`sqrt(0)=sqrt(1)+C`


`0=1+C`


`C = 0-1`


`C =-1` .


 Then plug-in C =-1 on the general solution: `sqrt( 1-y^2)= sqrt(1-x^2)+C` .


`sqrt( 1-y^2)= sqrt(1-x^2)+(-1)`



`(sqrt(1-y^2))^2 =(sqrt(1-x^2) -1)^2`


`1-y^2= (1-x^2) -2sqrt(1-x^2) +1`


Rearrange into:


`y^2=-(1-x^2) +2sqrt(1-x^2)`


`y^2=-1+x^2 +2sqrt(1-x^2)`


`y^2=x^2+2sqrt(1-x^2)-1`


Taking the square root on both sides:


`y =sqrt(x^2+2sqrt(1-x^2) -1)`

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...