`y=6^(3x-4)`
The derivative formula of an exponential function is:
`d/(dx) (a^u) = ln(a) * a^u * (du)/dx`
Applying this formula, the derivative of a function will be:
`(dy)/(dx) = d/(dx) (6^(3x-4))`
`(dy)/(dx) =ln(6) * 6^(3x-4) * d/(dx) (3x-4)`
`(dy)/(dx) = ln(6) * 6^(3x-4) * 3`
`(dy)/(dx) = 3ln(6) * 6^(3x-4)`
Therefore, the derivative of the function is `(dy)/(dx) = 3ln(6) * 6^(3x-4)` .
No comments:
Post a Comment