We have to evaluate the integral: `\int \frac{1}{(x-1)\sqrt{x^2-2x}}dx`
We can write the integral as:
`\int \frac{1}{(x-1)\sqrt{x^2-2x}}dx=\int \frac{1}{(x-1)\sqrt{(x-1)^2-1}}dx`
Let `x-1=t`
So , `dx=dt`
hence we can write,
`\int \frac{1}{(x-1)\sqrt{(x-1)^2-1}}dx=\int \frac{1}{t\sqrt{t^2-1}}dt`
Let `u=t^2`
So, `du=2tdt`
implies, `dt=\frac{1}{2t}du`
Therefore we have,
`\int\frac{1}{t\sqrt{t^2-1}}dt=\int \frac{1}{t\sqrt{u-1}}.\frac{du}{2t}`
`=\int \frac{1}{2u\sqrt{u-1}}du`
Now let `v=\sqrt{u-1}`
So, `dv=\frac{1}{2\sqrt{u-1}}du=\frac{1}{2v}du`
Hence we have,
`\int \frac{1}{2u\sqrt{u-1}}du=\int \frac{2vdv}{2(v^2+1)v}`
`=\int \frac{dv}{v^2+1}`
`=tan^{-1}(v)+C` where C is a constant.
`=tan^{-1}(\sqrt{u-1})+C`
`=tan^{-1}(\sqrt{t^2-1})+C`
`=tan^{-1}(\sqrt{(x-1)^2-1})+C`
`=tan^{-1}(\sqrt{x^2-2x})+C`
No comments:
Post a Comment