Thursday, April 28, 2016

`int (x^2 + 1)/(x^2 - 2x + 2)^2 dx` Evaluate the integral

`int(x^2+1)/(x^2-2x+2)^2dx`


Let's evaluate the above integral by rewriting the integrand as,


`int(x^2-2x+2+2x-1)/(x^2-2x+2)^2dx`


`=int(x^2-2x+2)/(x^2-2x+2)^2dx+int(2x-1)/(x^2-2x+2)^2dx`


`=int1/(x^2-2x+2)dx+int(2x-1)/(x^2-2x+2)^2dx`


Now again rewrite the second integral,


`=int1/(x^2-2x+2)dx+int((2x-2)+1)/(x^2-2x+2)^2dx`


`=int1/(x^2-2x+2)dx+int(2x-2)/(x^2-2x+2)^2dx+int1/(x^2-2x+2)^2dx`


Now let's evaluate the above three integrals,


`int1/(x^2-2x+2)dx=int1/((x-1)^2+1)dx`


Let's use the integral substitution,


Let u=x-1,


du=dx


`=int1/(1+u^2)du`


The above can be evaluated using the standard integral,


`int1/(x^2+a^2)dx=1/atan^(-1)(x/a)`


`=1/1tan^(-1)(u/1)`


`=tan^(-1)(u)`


Substitute back u=x-1,


`=tan^(-1)(x-1)`


Now let's evaluate the second integral by integral substitution,


`int(2x-2)/(x^2-2x+2)^2dx`


Let `v=(x^2-2x+2)`


`dv=(2x-2)dx`


`=int1/v^2dv`


`=v^(-2+1)/(-2+1)`


`=v^(-1)/-1`


`=-1/v`


Substitute back `v=(x^2-2x+2)`


`=-1/(x^2-2x+2)`


Noe let's evaluate the third integral,


`int1/(x^2-2x+2)^2dx`


`=int1/((x-1)^2+1)^2dx`


Let's use the integral substitution,


Let `tan(y)=x-1`


`sec^2(y)dy=dx`


`=int(sec^2(y)dy)/(tan^2(y)+1)^2`


Using the identity:`1+tan^2(y)=sec^2(y)`


`=int(sec^2(y))/(sec^2(y))^2dy`


`=int1/(sec^2(y))dy`


`=intcos^2(y)dy`


Now use the identity:`cos^2(y)=(1+cos(2y))/2`


`=int(1+cos(2y))/2dy`


`=int(1dy)/2+intcos(2y)/2dy`


` ` `=y/2+1/2sin(2y)/2`


`=y/2+sin(2y)/4`


Substitute back `y=tan^(-1)(x-1)`


`=1/2arctan(x-1)+1/4sin(2arctan(x-1))`


`=1/2arctan(x-1)+1/4{2sin(arctan(x-1))cos(arctan(x-1))}`


`=1/2arctan(x-1)+1/4{2*(x-1)/sqrt(x^2-2x+2)*1/sqrt(x^2-2x+2)}`


`=1/2arctan(x-1)+(1/2)(x-1)/(x^2-2x+2)`


`:.int(x^2+1)/(x^2-2x+2)^2dx=arctan(x-1)-1/(x^2-2x+2)+1/2arctan(x-1)+(x-1)/(2(x^2-2x+2))`


Add a constant C to the solution and simplify,


`=3/2arctan(x-1)+(-2+x-1)/(2(x^2-2x+2))+C`


`=3/2arctan(x-1)+(x-3)/(2(x^2-2x+2))+C`

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...