Thursday, April 28, 2016

`int (dt)/sqrt(t^2 - 6t + 13)` Evaluate the integral

`intdt/sqrt(t^2-6t+13)`


Let's evaluate the integral by rewriting it by completing the square on the denominator,


`=intdt/sqrt((t-3)^2+4)`


Now let's use the integral substitution,


Let `u=t-3`


`=>du=dt`


`=int(du)/sqrt(u^2+4)`


Now use the trigonometric substitution: For `sqrt(bx^2+a)`  substitute `x=sqrt(a)/sqrt(b)tan(v)`


So ,Let `u=2tan(v)`


`=>du=2sec^2(v)dv`


`=int(2sec^2(v)dv)/sqrt((2tan(v))^2+4)`


`=int(2sec^2(v)dv)/sqrt(4tan^2(v)+4)`


`=int(2sec^2(v)dv)/sqrt(4(tan^2(v)+1))`


`=int(2sec^2(v)dv)/(2sqrt(tan^2(v)+1))`


`=int(sec^2(v)dv)/sqrt(tan^2(v)+1)`


Now use the identity:`1+tan^2(x)=sec^2(x)`


`=int(sec^2(v)dv)/sqrt(sec^2(v))`


`=intsec(v)dv`


Now use the standard integral.


`intsec(x)dx=ln|sec(x)+tan(x)|`


`=ln|sec(v)+tan(v)|`


Substitute back `tan(v)=u/2`


`=>1+tan^2(v)=sec^2(v)`


`=>1+(u/2)^2=sec^2(v)`


`=>sec^2(v)=(u^2+4)/4`


`=>sec(v)=sqrt(u^2+4)/2`


Plug these into the solution, thus


`=ln|sqrt(u^2+4)/2+u/2|`


Now plug back u=t-3 and add a constant C to the solution,


`=ln|sqrt((t-3)^2+4)/2+(t-3)/2|+C`

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...