`intdt/sqrt(t^2-6t+13)`
Let's evaluate the integral by rewriting it by completing the square on the denominator,
`=intdt/sqrt((t-3)^2+4)`
Now let's use the integral substitution,
Let `u=t-3`
`=>du=dt`
`=int(du)/sqrt(u^2+4)`
Now use the trigonometric substitution: For `sqrt(bx^2+a)` substitute `x=sqrt(a)/sqrt(b)tan(v)`
So ,Let `u=2tan(v)`
`=>du=2sec^2(v)dv`
`=int(2sec^2(v)dv)/sqrt((2tan(v))^2+4)`
`=int(2sec^2(v)dv)/sqrt(4tan^2(v)+4)`
`=int(2sec^2(v)dv)/sqrt(4(tan^2(v)+1))`
`=int(2sec^2(v)dv)/(2sqrt(tan^2(v)+1))`
`=int(sec^2(v)dv)/sqrt(tan^2(v)+1)`
Now use the identity:`1+tan^2(x)=sec^2(x)`
`=int(sec^2(v)dv)/sqrt(sec^2(v))`
`=intsec(v)dv`
Now use the standard integral.
`intsec(x)dx=ln|sec(x)+tan(x)|`
`=ln|sec(v)+tan(v)|`
Substitute back `tan(v)=u/2`
`=>1+tan^2(v)=sec^2(v)`
`=>1+(u/2)^2=sec^2(v)`
`=>sec^2(v)=(u^2+4)/4`
`=>sec(v)=sqrt(u^2+4)/2`
Plug these into the solution, thus
`=ln|sqrt(u^2+4)/2+u/2|`
Now plug back u=t-3 and add a constant C to the solution,
`=ln|sqrt((t-3)^2+4)/2+(t-3)/2|+C`
No comments:
Post a Comment